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Computation of Coincident and Near-Coincident Cells for Any Two Latt ices-  Related 
DSC-1 and DSC-2 Lattices 
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(Received 3 November 1976; accepted 16 March 1977) 

A computation method is presented for determining: (i) pairs of non-primitive cells M1 and M2, con- 
structed on three translation vectors of a lattice 1 and three vectors of a lattice 2 respectively, such that 
the sizes of M1 and M2 are (almost) identical; (ii) Z~ (E2), defined by the number of primitive cells of 
lattice 1 (lattice 2) contained in M1 (M2); (iii) a characteristic relative orientation of the two lattices for 
which M1 and M2 coincide exactly or approximately, for which the transformation relating M1 to M2 
(denoted A in general) is a pure deformation, whose principal strains are calculated; (iv) base vectors 
for the DSC-1 and DSC-2 lattices, so that the Burgers vectors of intrinsic phase (or grain) boundary 
dislocations are determined. The DSC-1 lattice is constructed by summing the vectors of lattice 1 and 
lattice 2', deduced from lattice 2 by A- 1. The DSC-2 lattice is derived from the DSC-1 lattice by A. Tables 
of results are presented for a lattice 1/lattice 2 of Zn/Zn, up to ZI = Z2 = 25, and for Ni3A1 (cubic)/Ni3Nb 
(orthorhombic), up to E1 =21 and Z 2 = 10. 

1. Introduction 

Although the geometrical conditions giving rise to the 
coincidence of two cells M1 and M2 belonging to 
two lattices 1 and 2 have been studied by several 
authors (see, for example, Friedel, 1964; Santoro & 
MigheU, 1973), complete calculations have only been 
performed for the cases of two identical cubic lattices 
(Grimmer, Bollmann & Warrington, 1974; Goux, 
1974) and two identical hexagonal lattices with an 
ideal c/a ratio of (8/3) 1/2 (Fortes, 1973; Warrington, 
1975). However, for hexagonal metals, these ratios can 
be markedly different and are never ideal in the cases 
of interest. Some cases of exact and near coincidence 
of two cells M1 and M2 have been calculated by 
Bruggemann, Bishop & Hartt  (1972) for hexagonal lat- 
tices having different c/a ratios and by Bonnet & 
Durand (1975) for different lattices 1 and 2. In this 
work, it is shown how to calculate in the general case 
all the different pairs of cells M1 and M2 of any two 
lattices 1 and 2 such that M1 and M2 have almost 
(or exactly) the same size and how to determine a 
relative orientation of the lattices 1 and 2 which 
brings M1 and M2 into coincidence or near coinci- 
dence. M1 is defined uniquely as a Niggli reduced cell 
(Niggli, 1928; Kfiv~ & Gruber, 1976). In particular, 
its base vectors x~ (i = 1,2, 3) obey the inequality 

Ix~l ~ Ix2Xl ~ Ix~l (1) 

while its three angular parameters are all less than or 
more than n/2. Corres~pondingly, M2 is a cell of lattice 
2, with base vectors x~ (i = 1,2, 3), which can be super- 
posed on cell M1 within a given tolerance. The cell 
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M2 may or may not be a Niggli reduced cell. For 
instance, the angular parameters of M2 may deviate 
slightly from those of M1 without being necessarily 
all acute or obtuse as required for M1. In this work, 
a pair of cells M 1 and M2 is said to be 'different' from a 
pair of cells M I' and M2' if the sizes of M1 and M2 
cannot be exactly superposed on M I' and M2' re- 
spectively. Otherwise, the two pairs of cells are said 
to be 'identical'. 

Two examples are shown to illustrate the computa- 
tional method proposed. They give results concerning 
the cells M1 and M2 occurring in the twin orienta- 
tions of Zn and in the eutectic alloy NiaAl(cubic)/ 
Ni3Nb(orthorhombic). Other results are derived, in 
particular, base vectors for the DSC-1 and DSC-2 
lattices (Bonnet & Durand, 1975) which define the pos- 
sible Burgers vectors of intrinsic phase- (or grain-) 
boundary dislocations. These lattices extend the con- 
cept of the DSC lattices introduced by Bollmann 
(1967, 1970) and Warrington & Bollmann (1972) in 
the cases where M1 and M2 are exactly the same size. 

2. Analytical relations corresponding to a near 
coincidence of two cells MI and M2 

The orientations of lattices 1 and 2 are referred to an 
orthonormal frame F0 of base vectors e~ ( i= 1,2,3). 
The three base vectors a/~ (frame F1) of a primitive 
cell of lattice 1, hereinafter considered to be fixed in 
space, are defined by the transformation $1: 

(a/l) = Sl(ei). (2) 

The initial orientation of a primitive cell a 2 (frame 
F2) of lattice 2 is determined by the three vectors a 2' o, 
known from a given transformation 82, o: 

(a~' °) = $2, o(ei) . (3) 
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The flames F0, F1, F2, are taken with a common 
origin. 

Now let us assume that lattice 2 undergoes a rota- 
tion described by a vector R (components p, q, r in F0). 
The vector R is parallel to the rotation axis, IRI being 
the rotation angle. The sense of R defines a right- 
handed screw rotation. R and V are two transforma- 
tions related to the rotation of lattice 2: 

(a2)= R(a 2'° ) (4) 

(a2)=V(a~). (5) 

R is supposed to be such that two cells M1 and M2 
are in exact or near coincidence. Fig. 2 of Bonnet & 
Durand (1975) describes the situation. The base vectors 
of the cells M1 and M2, denoted x~ and x 2 respectively, 
are defined from the vectors at and a 2 by the transfor- 
mations U 1 and U 2 : 

(x/l) = Ul(a/1 ) (6) 

(X/2) = U2(a2). (7) 

Expressed in the flames F1 and F2, these two transfor- 
mations are integer matrices. The determinants of U 1 
and 02 define respectively the integers ,~1 and 272. 

We introduce now some quantities useful for the 
analysis: a transformation A relating M1 to M2, and 
a third lattice, the lattice 2'. A is defined by: 

(x~)=A(x~) ( i= 1,2,3). (8) 

The principal strains el, e2, e3, of the pure deforma- 
tion D relating M1 to M2 can be calculated from A 
by the following equation (Bonnet & Durand, 1975a): 

A=RpD (9) 

where Rp is a pure rotation. 
The transformation A, close to the identity trans- 

formation, allows us to define the lattice 2' (base 
vectors a 2', frame F2') which differs only slightly from 
the lattice 2. Following Bonnet (1974) and Bonnet & 
Durand (1975a): 

(a2') = A-  1(a2). (10) 

Combining (8) and (10) shows that for any A trans- 
formation the cell M1 is exactly common to both lat- 
tices 1 and 2'. The base vectors of M1 can also be de- 
fined from the vectors a~' by the transformation U2: 

(x~)= U~(a2'). (11) 

Expressed in the frame F2', this transformation is an 
integer matrix. The vectors a 2' are related to the vectors 
a~ by a transformation U: 

(a2') = O(a/1). (12) 

U is of importance later in the analysis to find base 
vectors for the DSC-1 lattice, defined by summing the 
translation vectors of lattices 1 and 2'. The DSC-2 
lattice is deduced from the DSC-1 lattice by the trans- 
formation A. 

Fig. 1 defines the transformations which relate the 
several base vectors and reference frames F0, F1, F2, 
F2' used. From Fig. 1 and matrix algebra we can ex- 
press the transformations V and I.I1 in the frame F1 
and the transformation U2 in the frame F2: 

[V]F1 = [Si- 1]Fo[R]Fo[S2, 0]po (13) 

[V]FI = [A]FI [U]pI (14) 

[u l  = [u] 1 [u'2 (I 5) 

[U2]F2 = [U~]r2, (16) 

where [R]Fo is the rotation matrix expressed in F0, 
related to the rotation vector R. Equation (13) gives 
the elements of [V]rl once [R]Fo is obtained from the 
three components p, q, r of R. In equation (15), the 
matrices [U1]F1 and [U2]F2,  have integer elements so 
that the matrix [U]F1 is a rational matrix. Since [A]rl  
is close or equal to the identity matrix, equation (14) 
shows that the elements of the matrix [V]F1 are close 
or equal to the rational elements of [U]rx. These latter 
can be written from equation (15), blij/z~, 2 o r  u l / N ,  
where N is the lowest common denominator of the 
fractions ui/272. Writing vii for the elements of [V]F1, 
it follows from equation (14) that the integers ui~ may 
be found from the numbers obtained from (Nvu) 
rounded to the nearest integer, i.e. 

ulj = R O U N D  (Nvu) .  (17) 

The slight mismatch of M1 and M2 may thus be 
characterized by the nine small numbers lu'ij-Nvijl.  
We seek M1 and M2 in which these nine numbers are 
all smaller than a given value Au, obviously less than 
0.5: 

Ulj-  Nvij < Au . (18) 

The problem of finding the pairs of cells M1 and 
M2 has now been reduced to the following: for 
1 < N < 272 max find the rotation R(p, q, r) so that the 
elements of [V]F1 satisfy the inequalities (18). Then, 
using the matrix [-U]vl according to Bonnet (1976), 
determine a unit cell of the coincidence site lattice 

Ai 

02, o 

_e.e i(Fo ) St 0 si(~) V 

x' U~ a "  " 
- i  -~(F2') 

x 2 _ U2 
- - i  

f l i 2 (~ )  

Fig. 1. Definition of the transformations ($1, V, etc.) relating the 
different bases (al, el, etc.). The bases el, a~, a 2, a 2' define the 
reference frames F0, F1, F2, F2' respectively. 
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(CSL) between lattices 1 and 2'. Finally, applying a 
reduction procedure, find the M1 cell and then the 
M2 cell by applying equations (15) and (16). 

3. Determination of R 

Since any small variations of p, q, r can maintain M1 
and M2 in near coincidence, it is necessary to define 
more precisely the rotation R to be computed. Let 
us now suppose that lattice 2 undergoes rotations R 
such that a vector V 2 of lattice 2 remains parallel or 
antiparallel to a vector V 1 of lattice 1, the lengths 
IV1[ and IV2[ differing only by a small length AL. 
Vectors V 1 and V 2 obey the relations: 

VXllV 2 (19) 

or  

VX[I-V 2 (20) 

I[VZl-IVlll < AL.  (21) 
In this work, the above relations are used to seek 

the pairs of cells M1 and M2. To limit the number 
of possible vectors V 1 and V 2 obeying the inequalities 
(21), a maximum value is now chosen for the volume 
of the cell M1, i.e. S,~ is chosen less than or equal to 
$1 max. The Appendix shows that the vectors x l of all 
the cells M1 obey the following inequality: 

I X ~[_~ (01 z~ 1 max) 1/321/6 = L (22) 

where va is the volume of a primitive cell of lattice 1. 
Consequently, looking for all the vectors V 1 such that: 

IVII<L (23) 

enables the computer calculation to arrive at an axis 
defined by the smallest vector of each cell M1. From 
the inequalities (21) and (23), we deduce a limitation 
on the length of vectors V2: 

[ V 2 I < L + A L  (24) 

and accordingly a limitation on the number of vectors 
V 2" 

The maximum value for $2, denoted 272 max, is 
needed in (18) to limit the search for the matrices 
[U']FI" Z2 max and is derived from 2~1 max and (8): 

S2 max = Ol E1 maxdet A/v2 (25) 

where det A is the determinant of A. Noting that the 
s u m  

S =  lel[ + le21 + lea[ (26) 

is small and that [equation (9).] det A may be expressed 
to a first order 

det A =  1 +e l  +e2 +e3 ,  (27) 

we deduce the following inequality: 

z~ 2 max~Vl z~ 1 max(1 + S ) / v  2 . (28) 

In this work, S is chosen less than an arbitrary 
value S max: 

S < S max .  (29) 

Calling INT the function which truncates at the 
decimal point we derive z~ 2 max as: 

z~ 2 max --- I N T [ v l  z~ 1 max(1 + S max)/v2,]. (30) 

The number of vectors V 1 and V 2 to be computed 
may be considerably reduced if the symmetries of the 
lattices are taken into account, for the following 
reasons: (1) the higher the symmetry of the lattices 1 
and 2, the lower are the number of different forms of 
vectors V 1 and V 2 to be kept in respect of the rela- 
tions (21), (23) and (24); (2) if a binary axis of lattice 1 
(lattice 2) is perpendicular to V ~ (V2), the relation (20) 
will give identical pairs of cells M1 and M2; (3) if 
either V 1 or V 2 is a symmetry axis of order n, the 
rotation 0 around V 1 may be reduced to 2rein, (4) if 
the greatest common divisor of the components of 
IVXlvl and IV2IF2 is an integer n greater than 1, the 
vectors V 1 and V 2 are to be rejected because the direc- 
tion VlllV 2 is also defined by the relation Vl/nl lV2/n;  
(5) if the lattices are the same, rotations of lattice 2 
around VlllV 2 will lead to the same pairs of cells M1 
and M2 as rotations around W~llW ~ where W ~ and 
W 2 have the same form as V 2 and V ~ respectively. In 
addition, a pair of cells M 1 and M2 and a pair of cell 
MI '  and M2' may be considered identical if M1 and 
M2 can be superposed respectively on M2' and M I'. 

4. Algorithm (Fig. 2) 

The matrix [R]~0, which depends on 0, can be ex- 
pressed by the product 

[R(O),]Fo = [R2( O)]Fo[R1,]Fo . (31) 

First, the rotation R1 turns lattice 2 from its initial 
orientation into an orientation such that V 2 becomes 
parallel or antiparallel to V 1. Second, lattice 2 is 
turned by the rotation R2(0) whose axis is parallel to 
W. Third, the angle 0 is increased in small increments 
A O. For each value of 0 and N ( <  •2 max), the computer 
calculates successively the matrices [R(0),]ro by equa- 
tion (31), [V,]F~ by equation (13), [U,]v~ by equation 
(17). If the inequality (18) is satisfied, the computer 
determines, using only [U,]F1, the quantities ~1, •2 
and a unit cell for the CSL defined by the lattice 1 
and 2' (Bonnet, 1976).* Then, using an algorithm 
based on the works of Buerger (1957, 1960), and 
Balashov & Ursell (1957), the computer determines 
the cell M1, i.e. [Ul , ]F  1. The cell M2 is determined by 
[U2,]r2 from (15) and (16). Finally, the pair of cells 
M1 and M2 is compared with each of the previously 
obtained pairs. Finding a new pair of cells M1 and 
M2 different from all the other pairs of cells previously 
found causes the computer to store 2~1, z~2, and 

* In this paper, the inequality line 19 on p. 802 must be written 
0 <_ tip~S,2 < 1/2, as noted by H. Grimmer (private communication). 
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[A]vo. [A]vo is calculated from the following expres- 
sion, deduced from (14) with matrix calculation: 

[A]Fo = [S1]Fo[V]F l [  U -  ~]Fl[S~- ~]~ o . ( 3 2 )  

The computer also stores the components p, q, r of 
the rotation vector R, in F0. 

It is worth noting here that other rotation vectors 
(called R'), not stored by the computer, may exist, 
which lead to pairs of cells MI '  and M2', identical 
with M1 and M2, but not necessarily to the same 
DSC-1 and DSC-2 lattices. 

We may write the transformation R' as a product: 

(R')=(X)(R). (33) 

I f  (X)=(R'~)(R~), [or (R2)(R1)] where the rotations 
R ' I ,  R'2, are symmetry operations for lattices 1 and 2 
respectively, then the DSC-1 and DSC-2 lattices are 
unchanged. In other cases, new DSC-1 and DSC-2 
lattices will in general be found for R'. In such cases, 
the rotation (X) may bring M2 into near coincidence 
with MI'. In this case, we must have an exact CSL 
between two identical lattices 1, for which 2: = 2:1. Or, 
(X) may bring a cell M2' into near coincidence with 
M1. In this case, there must exist an exact CSL be- 
tween two identical lattices 2, for which Z=Z2. 
Finally, (X) may bring a cell M 2' into near coincidence 
with MI'. In this case, CSL's must exist for identical 
lattices 1 and 2 respectively with multiplicities El 
and 2:2. 

Having stored El, 2:2, [A]vo and R (p, q, r) the com- 
puter then determines: (1) base vectors for a first unit 
cell of the DSC-1 lattice, derived from [U]vl following 
Bonnet (1976); (2) by reduction of this first unit cell, 
a Niggli reduced cell of the DSC-1 lattice; (3) a unit 

START 

Data : lattice parameters, 

Elmax , ~L, S, Au, A8 

For each axis 

• Determine E2max , then 
pairs vl# V 2 

For each 0 

For each N 

determine [U3F I 

I s  ( ] 8 )  ? verified 

~ Y E S  _ _ U s e  subrout ines  

Determine ~ 1 '  E2' Ml, M2.~__finding Ml 

I 
N= N +I ~ YES M I and J already found ? 

L Determine bases for the 

DSC lattices, R,  ~ 1 '  ~ 2 '  ~ 3 " ' "  

~TOP 

Fig. 2. Simplified flow chart of the computer program. 

cell for the DSC-2 lattice by applying the transforma- 
tion A to the Niggli reduced cell of the DSC-1 lattice; 
(4) the components of the eigenvectors of the pure 
deformation D relating M1 to M2 and the principal 
strains e z, e2, 83 [see equations (11) and (13) of Bonnet & 
Durand (1975a)]; the cells M1 and M2 for which 
S>_S max are not retained; (5) the orientation of 
lattice 2 such that the new transformation relating 
M1 to M2 is a pure deformation. This orientation, 
determined by the rotation vector R~ (components 
r l ,  r2, ra in F0), is calculated from [R]~o and (9). 

5. Example 1: Ni3AI/Ni3Nb (Table 1) 

For simplicity, the lattices of Ni3A1 and Ni3Nb are 
respectively denoted lattice 1 and lattice 2. The par- 
ameters of the NiaA1 (cubic) and NiaNb (ortho- 
rhombic) primitive cells are taken as those measured 
in the eutectic NiaA1-NiaNb. For NiaA1, a=3"592/~ 

Table 1. Near-coincident cells for lattice 1 
(NiaA1, cubic) and lattice 2 (NiaNb, orthorhombic) 

and other related crystallographic quantities. 
Computation performed for I~ max=21, AL=0"5/~, 

Sma~ =0.102, du=0"4, d0=0"003 rad 

10 5 
(12) (6) 
(16) (7) 

(10) (9) 

12 6 
(16) (e) 

12 6 

12 8 
(14) (7) 
(18) (8) 

10 0 

18 9 

19 9 

20 9 

20 9 

20 10 

21 10 

21 10 

M1 M 2  r% +,,, _ ' . .  
[u,]~, r.~1% m % ( I~  ('") ,,Z~ 
i i ~ i o o -o .oo6 -o .153 5 4 1 i ~ 3 0 0 5 
1 £ 2 0 1 3 0.005 0.080 5 5 4 1 1 2 2 2 6 2 

T -0.783 
0 ] ~ 3  0 ~ 2  0.052 0.810 0 1 6  1 3 2  2 4 5  

i 1 2 ~. 0 0 0.005 -0.503 6 4 3 1 2 3 0 0 
0.242 6 6 4 3 1 2 3 0 6 0 i 1 2 0 0 3 opr 0.019 -0.760 

0 2 ~ 0 2 0 0.027 0.988 0 4 6 2 2 0 4 0 0 

1 2 1 1 0 0 -0.021 1.080 6 2 5 2 1 4 0 0 6 
t ~ i 0 ~ ~ mo 0.005 -0.451 6 g 2 g 2 1 ~ 2 6 1 

-0.695 
0 0 ~ 0 2 0 P 0.070 1.388 0 8 3 0 3 0 4 0 2 

1" I 2 Z 0 0 -0.022 1.322 6 1 5 1 2 4 0 6 6 
1 1  2 o z ]  o ,  0.005 -o.540 5 ~ 1 ~  1 4  2 2 ]  3 

-0.650 
0 1 4 0 ~ 3 P 0.069 1.572 0 7 1 1 2 2 2 3 3 

1 1 3 1 0 0 -0.039 -0.904 4 2 3 2 2 4 0 0 9 
£ 3 0 2 0 or  -0.031 0.375 4 4 2 3 2 2 ; 6 0 0 

-0.724 
0 2 ] 0 0 ~ e 0.005 z.227 0 ; 3 2 2 0 2 6 0 

z z ~ I 0 0 -0.014 1.270 9 7 2 z ~ ~ 0 9 9 
0 I 6 0 1 5 or  0.005 0.661 9 0 2 ~ ~ 3 3 2 5 

-0.526 
1 1 3 0 I 4 P 0.061 1.526 9 7 2 1 6 3 2 4 4 

2 1 0 1 ~ 1 -0.047 -0.969 I 2 3 3 0 0 1 5 0 
z 2 I 1 i ~ t r t  -o .oo5 o.519 3 ~, o i 0 3 6 3 4 .s 

-1.307 
0 2 3 1 2 1 0.050 1.707 1 ~ 2 0 3 3 4 ~ 6 

I 2 1 ~. 0 0 -0.057 -0.465 9 7 4 1 3 5 0 0 1C 
1 2 I 0 2 3 mo -0.002 0.193 9 9 7 4 1 3 ; 4 4 2 

0.769 
0 0 5 0 i 3 P 0.005 0.919 0 .5 10 2 3 ~ 2 8 

i 2 i ~ 0 0 -0.057 0.485 9 7 ~ z 3 i o o 

I 2 1 0 2 ~ ~o -0.002 -0.769"0"193 9 ~ 7 Z 1 3 5 4 4 2 
o o ~ o ~ o.oo5 o.919 o 5 zo 2 ~ 1  2 i 1  

i 1" 3 1 0 0 -0.006 1.150 10 3 8 1" 3 6 0 0 1"C 
1" 1" ~ 0 2 2 =o 0.005 -0.476 10 10 3 8 1 3 4 4 4 

-0.684 
0 3 1" 0 2 3 P 0.052 1.421 0 11 4 3 1 2 4 6 1 

2 2  2 I 1 ~  -0.019 0.150 510 5 o o g  ~ ,  
~ .04  z z 3 mo -0.006 0.827 zo f i e  ~ ~ 4  ~ ~ 3  

-1.047 
0 2" 1 I ~ 0 e 0.027 1.230 8 ~ 10 4 2 2 7 0 0 

~ t" 1" i" i '  -0.019 2.570 13 2 5 2 4 I 1 6 3 
0.372 10 5 1 " ~  0 0 5  3 3 #  1 o i" C i 3 eo -o .oo6 o.496 

0 L T 1 f 1 0 P 0.027 2.651 4 8 10 4 2 2 7 0 0 
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(Mints, Belyaeva & Malkov, 1962). For Ni3Nb, we ob- 
tained from electron microscopy measurements a ' =  
5"106, b =4"226, c=4"517 A. The initial orientations of 
the frames F0, F1, F2 are chosen such that eilla~lla 2'° 
(i = 1, 2, 3). The expressions in F0 of the transformations 
91 and 82,o are: 

( 0!t (i o!) • 
0 0 

On stereographic projections, the representative 
points of vectors V 1 are inside the triangle [10011, 
[11011, [11111, while for V2 the representative points 
are inside the triangle [10012, [010~2, [00112. Setting 
2~1 max=21, Smax=0"102, AL=0"5 A, we find 14 dif- 
ferent axes of rotation. With the additional set of cal- 
culation parameters A u=0.4 and A0=0.003 rad, the 
computer now finds 18 different pairs of cells M1 and 
M2 (see Table 1). The program written in Fortran IV 
needs an execution time of 75 s on a Cyber 74 com- 
puter. Some of these pairs are found simultaneously 
for the same rotation R (rows 1,2,4). For such cases 
the greatest values of $1 and $2 are denoted in columns 
1 and 2 in parentheses. Columns 3 to 11 relate only to 
the values of El and X2 not enclosed in parentheses. 

Columns 3 to 6 specify successively: (i) the com- 
ponents of the base vectors of the cells M1 and M2 
referred respectively to the frames F1 and F2; (ii) the 
symmetry of the lattice built on M1, deduced from 
Niggli's scalar representation of M 1 (see, for instance, 
Buerger, 1957). The abbreviations or P, mo P, tri, 
mean, respectively, orthorhombic primitive, mono- 
clinic primitive, triclinic lattice; (iii) the corresponding 
principal strains el, •2, ca. 

Column 7 gives the components in F0 of the rota- 
tion vector Ra (rl, r2, r3) as well as the rotation angle 
IRa[ for which M2 can be deduced from M1 by a pure 
deformation. In some cases, pairs of cells have iden- 
tical cells M1 with cells M2 differing only slightly by 
one or two angles, e.g. the two pairs for which Z l = 
20 and S2 = 9. 

Columns 8 and 9 specify the rational transformation 

Columns 10 and 11 specify the components of the 
base vectors of the DSC-1 and DSC-2 lattices, with 
reference to frames F1 and F2 respectively. 

For instance, for the most commonly observed re- 
lative orientation of the two phases in our eutectic 
samples, the base vectors are (line 3, Table 1, Zl = 12 
and Z2 = 6): 

a 2(T10) for the DSC-1 lattice: _ ~ (112), ~ (111), 
t 

c b (010), ~ a (100) - for the DSC-2 lattice: ~ (001), ~ 

It is worth noting that only three different R axes are 
needed to determine all the different pairs of cells M 1 
and M2. These axes are: [ 11011 lie 100] 2, [ 1 ~ 1 ]111[011 ] 2, 
[2i-01111111112. 

6. Example 2: Zn/Zn (Table 2) 

The parameters of the hexagonal primitive cell of pure 
Zn are: a=b=2.664 ,  c=4.9461 A, ~=fl=rr/2,  ?=2~/3 
[Ancker (1953), cited by Donnay & Ondick (1973)1. 
As in example 1, the initial orientations of frames F0, 
F1, F2 are such that eilla111a 2'°. The expressions in 
F0 of transformations 91 and 82 are: 

[S11F0 = [82, 01F0 = (al/3)/2 . 
0 

Choosing El max=25, Smax=0"021, AL=0"5 /~ leads 
to 24 different axes VlllV2. With the additional set 
of calculation parameters Au =0.3 and A 0= 0.003 rad, 
the computer finds 23 different pairs of cells M1 and 
M2 for which Z1 = X2 = N = Z (see Table 2). 

The results obtained by Bruggeman et al. (1971) for 
Zn are included in Table 2, as are those of Warrington 
(1975), which relate to the three solutions S =  7,13,19, 
for which el =/~2 =/~a =0. Rotations R are found which 
may define, as above, more than one pair of cells 
M1 and M2 (rows 4, 5,6,9). The columns 2 to 9 relate 
only to the values of Z not enclosed in parentheses. 
The symmetry of the lattice built on M1 is denoted 
by one of the abbreviations hex, rh, mo P, mo C or 
tri which mean respectively hexagonal, rhombohedral, 
monoclinic primitive, side-centred monoclinic, tri- 
clinic. 

For this second example six R axes are needed to 
determine the 24 pairs of cells M1 and M2. These 
axes are [100], [210], [001], [310], [201], [311]. 

Conclusion 

A computer technique has been developed leading to 
the determination of all different pairs of non-primitive 
cells M1 and M2 of lattices 1 and 2 which can be ap- 
proximately or exactly superposed for suitable relative 
orientations of the two lattices. For each pair of cells, 
the program determines an orientation of lattice 2 for 
which M2 can be deduced from M1 by a pure defor- 
mation. If lattices 1 and 2 are the same, the computing 
method gives all the twin orientations. 

The program can treat two triclinic cells without 
difficulty. Applied to reciprocal lattices, the program 
can find directly the orientation relations giving rise 
to a high coincidence of dense direct lattice planes. 
Convenient base vectors for the DSC-1 and DSC-2 
lattices are determined which are necessary to deter- 
mine the Burgers vectors of intrinsic phase- (or 
grain-) boundary dislocations. 

The method has been applied to the crystal lattices 
of Ni3A1 (cubic) and NiaNb (orthorhombic) up to 
Z (Ni3A1)= 21 and Z (NiaNb)= 10, and to two lattices 
of Zn (hexagonal) up to Z (Zn) = 25. For these examples, 
the execution time of the program is about 75 s with a 
Cyber 74 computer. 
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The examples treated show that for certain orienta- 
tion relations several different pairs of cells M1 and 

Table 2. Near (and exact) concident cells M1 and M2 
for two lattices of  Zn and related crystallographic 
quantities. Computation performed for S,1 m~x = 25, 
AL=0"5 A, Smax =0.021, Au=0.3, A0=0"003 rad 

M1 M2 ~ ~ ..~)" f2  

o 2 1  0 3 i  0 0 3 

7 0 I 3 0 I 2 hex 0 -0.6670 
i 0 0  i 0 0  0 0.667 0 

I 1 1 I 1 2 -0.010 1.231 9 

9 0 3 3  0 3 3  mo 0 o 
0 1 ~ 0 i ~ C 0.010 ~1.231 0 

, , , , , , 
9 2 0 1 2 0 1 -0.006 0.850 9 

(22) 1 I 3 1 1 3 mo O 0.491 2 
o 

o 1 I o 1 1 c 0.007 0.982 2 

11 I o 4 ~ ~ 4 -0.008 -0.881 11 
(17) 0 1 9 0 ~ 9 too 0 X 0 

0.881 0 

1.494 13 
(15) 0 2 ~ 0 2 '} mo 0 0 i 0 

0 
1.494 0 

0 1 2  0 1 2  c 0.008 

13 1 1 3  1 1 3  -0.0o8 

o 1 3  o 1 3  c o.ooe 

o i l  o ~ I  0 

13 0 3 ~  0 1 ]  ~ x  0 

1 0 0  1 0 0  0 

2 1 0  2 1 0  -o.oo4 

15 l i t  I o ~  ~ J o 
o i 1  o I I  c [ 0.004 

15 211 21I -o.ozo 

(23) I 2 4  1 1 4  ~ 0 
0 1 2  0 1 2  C 0.010 

2 0 I  2 0 1  -o.oo8 
15 I2~ I23 ~ o 

0 1 2  0 1 2  c 0.008 

i 
~ ] 1 ~ o 2 9  -O.OLO 

17 I14 115 mo 
0 1 4  0 1 ]  C 

123 121 
18 o ~ g  o i 2  : o  

o i 3  o 1 4  P 

~II~ ' Io~ t ~ - o  

19 oi§ o1~ ~o 

o ~ z  o 2 1  c o 

0 3 2  o ~ 2  o 

19 0 2 5  0 2 3  h e x  0 

I o 0  I o 0 :  o 

0 

0.010 

-0.002 

0 

0.002 

-0.005 

0 

0.005 

2 1 1  2 1 1  -0.007 
1 ~ 5  1 2 5  ~ 0 
0 2 1  o 2 1  c 0.007 

2 1 3  1 2 ]  
2]. 3 t I ,  2 ] I r h  

i I I  1 1 1  
i t i 

2 1 ]  I 2 ]  
21 3 2  X 2 3  X r h  

I I l  211 

' I I i  ! I z I '  
23 0 2 ~  0 2 7  mo 

o ] 1  o ~ I  c 

; 2 o i '  2 o 1 '  
25 i 3 i  I 3 3  nm 

0 I  3 0 1 3  C 

i t i 
3 0 2  3 0 1  

2 5  1 3 3  1 ~ ~ t r i  
0 i 2  0 ~  

-0.007 
0 

0.007 

-0.007 

0 

0.007 

-0.004 
0 

0.004 

-0.007 

0 
0.007: 

- 0 . 0 0 9  

0 

0.009 

5 o  2 1 o  ~ I o  

8 0 I 1 3 0 ~ 2 o 

0 7 ] 0 0 ~  o o ~  

3 §  3 3 g i 0 3 ~  
3 ~  6 3 3 : 0 3 ]  
4 3  I ~ I 1 3 1 1  

, , 

O 0  0 0 9  0 0 9  

4 5  121 1 2 1  

2 9  Is~ 1 6 ;  

718  21~ 2 1 ~  
i 7  2 1 1  213 

~ 1 3 1 o  1 3 1 0  
1 ~  2 7 7  2 7 7  
6 1  I 3 3  ~ 3 3  

O0 7 8 0 1 4 0 

~15  0 3 i o -0.562 
0.562 0 0 13 0 0 13 

-0.452 15 0 0 0 0 13 
-0.261 

0 1 13 14 1 7 7 
0.522 2 ] 13 2 [ 1 

1.186 15 0 0 0 0 15 
0.685 6 3 2~ 3 6 9 
0 
1.369 i 8 3 2 1 

i i 
1. 303 15 0 0 0 0 I~ 
0.752 7 Z ~ 2 ~ 1"I 
0 
1.504 I ] 8 1 * T 4 2 

2.765 8 ~'~ 18 
o 91"~ r i  
1.621 
2.397 8 0 1 

i 
0.982 18 ~ 13 
o o ~  o 
0.982 0 7 10 

I 
-0.463 19 ~ 9 

0 
0 0 17 18 
0.463 0 ~ 27 

i 

O0 5 16 0 
1321 8 o0.817 

0.817 0 0 29 
I 

-0.671 21 0 0 
-0.388- 3 1527 

V 

0.775 4 ~ 15 
i 

1.212 22 r~ 14 
0.420 19 i 2§ 
0.907 
1. 571 i 2 8 7  

I 
-1.212 8 11 28 
-0.420 § 6 42 
-0.907 

Ls7z  8 I"6 7 
i 

-0.599 23 2 14 
o o 19 28 
0 
0.599 o ~ 19 

i 
0.988 25 0 0 
0.558 7 11 ~'~ 
o 
1.115 g 12 11 

! 

x.os4 28 ] 
0.36S 5 1o ~'~ 
0.0 
1.115 ~ 12 11 

i z3 ] 
1 4 ~  
I ] ] 

2 r ~  6 

4 g g 

I 3 3 

z s "~ 
2 10 1 

4 1 2 

3 2 0 

2 g 0 
0 o r ~  

0 0 21 

6 ] 9 

I 3 2 

2 3 3 

2 318  
3 g 6 
2 3 ] 

I 7 1 3  

3 2 Z 

0 0~r~ 

3 7 1 3  
I S 3 

g g x 5  
! 4 3 

M2 with small values of S1, 272 (or 271 =272=27), may 
be in near coincidence simultaneously. In these cases, 
different DSC-1 and DSC-2 lattices may be calculated 
for the corresponding orientation relations. 

3 4 0 

I 3 0 

0 0 13 

0 013  
I 7 [ 

2 1 1 

0 0 15 

3 3 s 
2 3 1 

0 013  
2 7 ;  

I 4 2 

I 1 " 3 4  
T 4 4 

2 §10  

4 2 2 

T 4 4 

r 4I"6 

2 8 ! 

4 3 2 
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A P P E N D I X  

Let us consider a multiple cell M of a lattice A, M 
being a Niggli reduced cell. If the six parameters of 
M are a, b, c, c~,/3, ~ with lal-< Ibl < Icl the volume of 
M is 

V=abc(1--COS 2 0 C - - C O S  2 / 3 - - C O S  2 

+ 2  cos ~ cos/3 cos y)1/2. (la) 

From this equation and the property that the three 
angles c~,/3, y cannot deviate from n/2 by more than 30 ° 
(Balashov & Ursell, 1957), we derive the inequality: 

V>a3/(2) 1/2 . (2a) 

Denoting by 27 the ratio V/v, where v is the volume 
of a primitive cell of lattice A, we deduce the following 
inequality: 

a < (S 13)1/321/6. (3a) 
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A new expression for the conditional probability distribution of quintet structure invariants is given, 
which in exponential approximation reduces to the exponential expression of Hauptman & Fortier 
[Acta Cryst. (1977), A33, 575-580]. In a practical example the expression gave promising results. 

Introduction 

Several expressions for the conditional probability 
distributions (c.p.d.) of quartet and quintet structure 
invariants have been reported, some of which have a 
purely exponential form while others contain Bessel 
functions as well. 

For quartets the theory is well established. For the 
magnitudes of the reflexions H, K, L, H + K +L,  
H + K, H + L, K + L Hauptman (1975) derived the ex- 
pression 

P(I~P4I) = L exp ( - 4E4 cos ¢p4)Io(2N- 1/2 IEn + rlZn~) 

x Io(2N-1/21EH+LIZnL)I0(2N-1/21EK+,JZw.) (1) 

in which L is a suitable normalizing constant, 

E4 = N -  I IEnErELEu + r, + r.I , 

~ 4 -= ~ H -'t- q) K -+" tp  L -+- (p _ H _ K _ L , 

Io is a modified Bessel function and 

Z n r  = (EuEr2 2 ..~ ELEn2 2 + K + L -Jv 2NE4 cos ¢P4) x [2 

Dependent on the seven IEI values a maximum value 
of P(l~041) corresponds to a phase 1~041 anywhere in 
the range 0 <  I~041- ~. 

A second expression for the c.p.d, of quartets is 
derived by Giacovazzo (1976): 

P(ItP4[) = L' exp [ -  2E4(2-  E 2 + r 
2 2 -En+r.-Er,+t . )cos~p4] (2) 

in which L' is a suitable normalizing constant. This 
formula has maxima for ~P4 = 0 or n only. 

Making use of 

/0(z)-~exp ( - ~ )  , (3) 

which is valid for small values of z, Heinerman (1976) 
(see also Giacovazzo, 1977) has shown that (2) is an 
approximation of (1). Test results (Schenk, 1977) show 
that (1) leads to phase estimates with smaller errors 
than (2) does. 

For the estimation of phases 

Iq~51 = Iq~ + q~K + q~L + q~M + q~- n-~-L-MI 
of quintet relations several procedures and expressions 
have been described (Schenk, 1975; Schenk & van der 
Putten, 1976; Krabbendam, 1976; van der Putten & 
Schenk, 1976; Hauptman & Fortier, 1977). 

Among the purely exponential expressions the one 
of Hauptman & Fortier (1977) looks the most prom- 
ising. 

e(ItPsI)=C exp [( ~ 2 2 En+rEL+M 
15 t e r m s  

- 2  }-" E2+~+6)2E5 cos~ps]. (4) 
10 t e r m s  

Here C is a suitable normalizing constant, the sums 
are taken over all combinations of the 10 cross-re- 
flexions H + K etc. and 

E s = N -  3 /2  IEnErELEMEn + K + L + MI • 
Like its quartet analogue (2) this formula gives values 
for I~osl of 0 and n only. 

The mixed exponential-Bessel formulae for quintets 
reported so far are proposed on the basis of the purely 
exponential expressions. It was stated by Hauptman 
& Fortier (1977) that: 'it is therefore plausible to as- 


